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INTRODUCTION

Textural studies in igneous petrology flourished in the nine-
teenth century, following the development of the petrographic
microscope. At that time, textural observations were qualita-
tive—average grain-sizes, grain relationship, and fabrics. Al-
though qualitative data has its uses, it cannot constrain physical
models of processes in the same way that quantitative data can.
Textures are important because they result from the solidifica-
tion of rocks, and hence if we want to understand solidification
of igneous rocks then we must quantify and model texture. I
use the word solidification rather than crystallization because
solution of crystals may be important in many plutonic and
even volcanic rocks (e.g., Higgins 1998; Marsh 1998).

There are many aspects of the texture of igneous rocks that
can be quantified, but the most commonly quantified param-
eter is crystal size. The distribution of these sizes in three di-
mensions, the crystal size distribution (CSD), can give much
more information on petrological problems than the mean,
modal, or maximum size (e.g., Cashman 1990; Cashman and
Marsh 1988; Marsh 1988). CSDs can reveal aspects of the ther-
mal history of a magma and may give information on growth
rates and magma repose times (e.g., Cashman 1993; Resmini
and Marsh 1995).

There have been several studies of crystal sizes in igneous
rocks during the last 40 years (one of the earliest was that of
Jackson 1961), but the subject only started to mature in 1988
after the publication of the seminal papers of Marsh (1988)
and Cashman and Marsh (1988). These authors established a
theoretical basis for CSDs by the application of the industrial
models of Randolf and Larson (1971). They also established
the “CSD diagram” in which the natural logarithm of the popu-
lation density is plotted against crystal size. Since then the sub-
ject has developed fast. However, some workers may have been

reluctant to embark upon research in this field because there is
no published general guide on how to determine CSDs. In this
paper I try to fill that gap, based on my own experiences. In the
first part I describe practical methods for acquiring data from
two-dimensional sections, such as outcrops, slabs, and thin sec-
tions. The second part will concern the conversion of two-di-
mensional data to three-dimensional CSDs. I discuss aspects
of the general problem and approaches to the solution. A com-
puter program is presented that enables the conversion to be
made simply.

METHODS OF ACQUISITION OF CRYSTAL SIZE
DISTRIBUTIONS

Crystal size distributions can be measured directly when
crystals can be extracted quantitatively whole from a volume
of rock—a rather unusual situation for most igneous rocks, ex-
cept perhaps carbonatites. Success also has been achieved
using X-ray tomography of rocks for minerals at low concen-
trations, such as garnet or diamond (Denison and Carlson 1997;
Rowe et al. 1997). In general, this method cannot separate
touching crystals of the same mineral, although there has re-
cently been some progress in this field (Proussevitch and
Sahagian 2000).

Most CSD data are determined from two-dimensional sec-
tions through rocks—outcrops, slabs, or thin sections. The con-
version from two-dimensional to three-dimensional parameters
is not simple and will be discussed later. These two-dimen-
sional sections are images that need to be processed to extract
various parameters describing the intersections, such as length,
width, area, perimeter, orientation, and centroid location. Pro-
cessing can be either manual or automatic. In manual treat-
ment, the different intersections are identified by eye, using
color, birefringence, twinning, cleavage, and other properties.
This technique is laborious, but can give high-quality data.
Automatic image processing is much quicker, but is currently
much less elaborate, using only colors for classification of par-
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ticles. However, in some circumstances it can give very useful
results. In these cases strict quality control must be enforced,
for instance by manual analysis of a few selected samples.

The simplest textural analysis involves only one section. If
there is an appreciable fabric (foliation or lineation), then sec-
tions parallel and normal to the dominant structure are neces-
sary or a quantitative estimate of the nature and quality of the
fabric, and its orientation with respect to the section. The maxi-
mum information on the texture of a rock can only be obtained
from many serial sections. However, the amount of work in-
volved means that crystal numbers, and hence statistical reli-
ability, may be sacrificed. If only the mean dimensions of the
crystals are needed and the rock is massive (no fabric), then
several direct stereological techniques can be used. Most use
two parallel sections with a known spacing (Howard and Reed
1998; Royet 1991).

Lengths and widths of intersections can be defined in sev-
eral different ways (Fig. 1A). However, the exact definition
used is not that important, provided it is used consistently. In
the modeling presented here, the length is defined as being the
greatest dimension of the intersection. The area of each inter-

section is uniquely defined, but unfortunately is not the best
size parameter for stereological corrections (Higgins 1994).

Some large crystals can be measured directly from the out-
crop, for example, megacrysts in granites (Higgins 2000) or
oikocrysts in mafic rocks. Crystals can be measured with a ruler,
or their outlines traced onto an overlay for measurement later,
or a mosaic of photographs can be taken for later analysis. For
glacially polished surfaces the intersections with the surface
are measured. But where there has been extensive weathering
the megacrysts may stand out from the surface. In this case the
true 3D size of the crystals can be measured. However, the
minimum crystal size that can be consistently measured must
be clearly established.

For rocks containing large crystals, sawn slabs can be very
useful. The surface can be polished, etched, or stained to en-
hance the contrast between the different minerals. Two of the
best known stains are sodium cobaltinitrate following a hy-
drofluoric acid etch, which colors all potassium feldspar a deep
orange, and amaranth, which gives a deep red to plagioclase.
Other minerals also can be stained (Hutchison 1974). Crystals
in slabs can be measured manually as for outcrops. Slabs can
also be placed on a scanner and the images analyzed automati-
cally or manually.

For automatic image analysis, the image first must be pro-
cessed to reduce it to a binary (black and white) image of the
mineral of interest. This is done by selecting the color values
associated with the mineral using readily available general
purpose, image-processing software (Adobe Photoshop, Corel
Photo-Paint), shareware (LViewPro), or dedicated programs
(Image-Pro Plus, SigmaScan Pro, IPLab, ImageTool). The im-
age can be manipulated to remove “noise” (individual pixels
or small groups of pixels) or to separate individual crystals.
Several images can be produced for different minerals in the
rock. The binary image can be analyzed by powerful freeware
programs such as NIH Image (Macintosh OS) and Scion Im-
age (NIH Image for Macintosh OS and Windows 95/98).

Thin sections can be measured manually in several ways.
The simplest is to use the scale in the microscope eyepiece to
measure crystal length and width. This method has the advan-
tage that different magnifications and orientations of the stage
can be used to identify the crystal. All crystals with intersec-
tions greater than the lower cut-off limit must be measured.
However, it is difficult to keep track of which crystals have
been measured, although a photograph can be useful.

A more complex method involves taking photographs of
parts of a thin section, or the entire section. These can then be
measured in three different ways: (1) the crystal length and
width can be determined using a ruler; (2) the crystal outlines
can be traced onto a transparent overlay, which is then scanned
and analyzed automatically as mentioned before; and (3) the
photographs can be put on a digitizing tablet and the outline of
each crystal in the photograph traced using the digitizing puck.
Several commercial programs (e.g., SigmaScan Pro) and
shareware (Measure) can be used to control the digitizing tab-
let and reduce the raw positional data to morphometric param-
eters. In each case the actual outline of the crystal in the thin
section should be verified with a polarizing microscope. Thin
section images also can be analyzed by automatic methods, as

FIGURE 1. (A) Intersection dimensions. Three possible definitions
of length and width are indicated; The maximum length and an
orthogonal width are appropriate for irregular crystals. However, for
intersections with parallelepipeds the width is defined more easily as
the minimum width of the intersection, with the length normal to this.
Many automatic image—analysis programs approximate the
intersection with an ellipse of the same area—length and width are
then those of the ellipse. (B) A model crystal as a parallelepiped. The
aspect ratio of this solid is characterised by three dimensions: Short,
Intermediate, and Long. A plane intersecting the object will give a
polyhedron of three to six sides (Higgins 1994). Examples of such
intersections are shown in Figure 2.



HIGGINS: CRYSTAL SIZE DISTRIBUTION 1107

for slabs. The image can be acquired directly from the micro-
scope with a digital camera, or mosaics of photographs can be
scanned. Some image analysis systems allow a combination of
these methods: crystal outlines can be picked out manually from
the processed image.

Images of very small crystals can be obtained using reflected
light or with a scanning electron microscope, using the
backscattered electron image or an electron microprobe with
X-ray maps. These images can be analyzed in exactly the same
way as for thin sections and slabs.

No matter what method is used to acquire intersection size
data, the minimum size that can be recognized and measured
must be established. If no data are listed for crystals smaller
than a certain size, it is important to indicate whether this re-
flects an artifact of measurement or a real lack of intersections
in that size range. It is also important to record the details of
the data-acquisition method and steps taken to ensure adequate
quality control.

RESULTS OF MEASUREMENTS

Most data acquisition methods produce the same result—
list of crystal intersection properties, such as length, width, area,
orientation, and the area of the surface measured. The first step
is to calculate the frequency distribution of the area number
density. CSD data commonly have an approximate logarith-
mic-normal distribution, hence it is best to use logarithmic size
intervals for length and width measurements (Sahagian and
Proussevitch 1998; Saltikov 1967). The number of size inter-
vals (bins) per decade used will depend on the amount of data
(number of crystals measured), the range in crystal sizes, and
the stereological conversion method used (see later). In my
experience, four to five bins per decade are usually suitable.
More bins can introduce errors because there are fewer crys-
tals in each bin and also because more cycles of correction are
necessary during the stereological conversion (see later). The
number of crystals in each bin is divided by the total area mea-
sured to give the area number density, nA(lXY), for each size
interval, lX to lY. [Throughout this paper, three-dimensional
lengths are indicated by capital letters (e.g., L) and intersection
lengths and widths by lower case letters (e.g., l, w)]

Some authors use the cumulative frequency of intersection
lengths, NA(l) instead of the number density. This is the sum of
all intersections smaller than l (e.g., Cashman and Marsh 1988)
or more rarely larger than l (Peterson 1996). The cumulative
frequency distribution can be converted to nA(lXY) by differen-
tiation over discrete intervals. Where data are sparse, for in-
stance for large crystals, cumulative frequency methods have
the advantage of eliminating “holes” (empty bins) in the data
and smoothing it. In some cases, use of cumulative frequency
methods eliminates a step in the calculations (see Peterson
1996). However, for the method proposed here, they introduce
an extra, unnecessary step and hence will not be considered
further.

STEREOLOGY—CONVERSION OF 2D INTERSECTIONS
TO TRUE (3D) DIMENSIONS

The raw data on crystal sizes are only a measurement of
intersections of crystals with a plane (Figs. 1B and 2). Clearly,

three-dimensional size data are required for discussion of pet-
rological processes. The problem of conversion of two-dimen-
sional section data to three-dimensional CSDs is not simple
for objects more geometrically complex than a sphere and there
is no unique solution for real data. This subject is treated in a
branch of mathematics called stereology. There are several re-
views and books on the subject, mostly aimed at the biological
sciences (e.g., Howard and Reed 1998; Royet 1991; Underwood
1970). Aspects of the problem relevant to geology have been
discussed most recently by Sahagian and Proussevitch (1998),
Cashman and Marsh (1988), and Peterson (1996).

Stereological solutions to this problem can be classed into
direct or unbiased methods for which no assumptions about
the shape and size distribution of the particles are necessary,
and indirect or biased methods, in which some assumptions
are needed (Fig. 3). Indirect methods can be classified further
into parametric methods, where a size-distribution law is as-
sumed, and distribution-free methods that are applicable to all
distributions.

In an ideal world the direct methods would be the best solu-
tion. However, although direct methods for the determination
of mean size are very powerful and simple (Howard and Reed
1998), those for the determination of particle size distributions
are extremely laborious because serial sections (many closely
spaced sections) are necessary. Although possible in some cases,
serial sectioning can be rarely done on large enough volumes
of material to give statistically meaningful data. In addition,
the smallest crystal that can be detected is equal to the section
spacing. We are usually left, therefore, with indirect methods.

It should be mentioned that the techniques to be discussed
below are based on the assumption that the section measured
(or visible part of the surface) is thin compared with the di-
mensions of the object. For thin sections viewed in transmitted
light, this assumption means that the crystals must be larger
than about 0.03 mm, the thickness of a standard thin section. If
crystals smaller that this limit are to be measured, then the crys-
tal outlines are a projection and not a section, and hence differ-
ent equations must be used that are not discussed here.

Many published CSD studies to date have used the follow-
ing equation to convert section data to CSDs:

nV(LXY) = nA(lXY)1.5 (1)

where nV(LXY) is the number of crystals per unit volume in the
length interval LX to LY, and nA(lXY) is the number of intersec-
tions per unit area in the intersection length interval lX to lY.
This equation was first used by Wager (1961) to convert total
numbers of crystals in sections to volumetric numbers, with-
out any discussion of its origin or justification for its use. Wa-
ger (1961) may have chosen this equation because it is the
simplest way to convert the dimensions of nA(lXY), 1/L2, to that
of nV(LXY), 1/L3. Equation 1 is not discussed in general reviews
of stereological methods (e.g., Howard and Reed 1998; Royet
1991; Underwood 1970) or those applied to geological prob-
lems (e.g., Sahagian and Proussevitch 1998). Peterson (1996)
considered that Equation 1 had a weaker theoretical basis than
the equations that he used (see later) and produced results that
lay further from the true values. In my opinion, use of Wager’s
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equation should be discontinued. Data should be calculated
using the methods of Peterson (1996), Sahagian and
Prooussevitch (1998), or those presented in this paper. Pub-
lished data determined using Wager’s equation is not wasted
and can be recalculated if ancillary information (shape, fabric)
on the crystals and section are available.

To return to the stereological problems of conversion, two
aspects are relevant here (Royet 1991; Underwood 1970): the
intersection plane rarely cuts exactly through the center of each
particle; hence, even in a monodisperse population of particles
(one true size), intersection sizes have a broad range about the
modal value, from zero to the greatest 3D length (Figs. 4A and
4B). This is known as the cut-section effect. For a polydisperse
distribution (many different true sizes), smaller crystals are less
likely to be intersected by a plane than larger crystals. This is
known as the intersection-probability effect. Both problems
compound to make the stereological conversion complex.

INDIRECT METHODS—PARAMETRIC SOLUTIONS

Peterson (1996) proposed a parametric solution to rock
CSDs. He assumed that rock CSDs have a strict logarithmic
variation in population density for a linear variation in length.
This distribution is indicated by the theoretical studies of Marsh
(1988) for simple igneous systems. However, it should be noted
that most sedimentary rocks have a rather different distribu-
tion that is log-normal by volume frequency (Jerram 2000).
Peterson first corrected the data for the intersection-probabil-
ity effect (see Eq. 3 below). He then applied a further correc-
tion using three empirical parameters that depend on the shape
and spatial orientation of the crystals. He found a good corre-
lation between the CSDs determined by his methods and the
true CSDs for synthetic data with logarithmic-linear CSDs.
However, many published natural CSDs are not linear (e.g.,
Higgins 1996; Marsh 1998; Resmini and Marsh 1995; Waters

FIGURE 2. Intersections of one hundred randomly oriented planes with
four regular parallelepipeds. The perspective image of the block is at the
same scale. For cubes, the length and width of the most likely intersection
are close to the true length of the object. For prisms, the most likely
intersection is normal to the long axis of the prism, hence the most common
intersection is almost square. For tablets, the most common intersection is
rectangular, with a width close to the small dimension and a length close
to the intermediate dimension (see Fig. 4B).

FIGURE 3. Classification of stereological methods for crystal size
distribution measurements. Distribution-free methods are developed
in this paper.
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and Boudreau 1996) and published linear CSDs calculated us-
ing Equation 1 may also be curved. Peterson was aware of this
problem and applied the corrections derived from linear ap-
proximations to the actual curved CSDs. However, he did not
verify whether the results for curved CSDs were accurate us-
ing synthetic or natural data. Hence, it is not clear if these para-
metric methods can be applied to many natural systems. It also
seems unwise to use a technique to find CSDs that assumes a
CSD shape beforehand. Another limitation of these methods is
that they can only be applied to isotropic fabrics, unless other
parameters are introduced.

DISTRIBUTION-FREE SOLUTIONS—THE INTERSECTION
PROBABILITY EFFECT

The intersection probability effect is easily resolved for a
monodisperse (one true size) collection of spheres (Royet 1991):

n
n

DV
A= (2)

where nv is the total number of spheres per unit volume, nA is
the total number of spheres per unit area, and D is the diameter
of the spheres. This relationship also applies to polydisperse

FIGURE 4. (A) Diameters of intersections of a sphere normalized to the true sphere diameter. (B) Lengths and widths of intersections of
parallelepipeds, normalized to the dimensions of the blocks. The vertical scale is the relative frequency of occurrence of intersections and is
related to the probability of intersection. The scale is the same for all four diagrams of orthogonal solids. The width is the minimum width and
the length is normal to this (Fig. 1A). Normalized lengths for all parallelepipeds have modes close to one. For cubes and tablets, there is
significant tailing to smaller intersections. For prisms, tailing to greater lengths is more important. Normalized widths for all parallelepipeds
also have modes close to one and generally narrower peaks than the normalized lengths.
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collections of spheres, and can be modified so that it applies to
polydisperse collections of other shapes if a linear measure of
the size of the particle is used instead of the diameter.

The size of spheres is uniquely determined by their diam-
eter, but the size of non-spherical objects can be defined in
several ways. The simplest is the Length of the longest dimen-
sion of the particle and is the measure used in this paper. The
Mean Tangent Diameter is the diameter of a sphere of equal
volume. This measure is most relevant if we want to determine
the total amount of material in each particle. Another measure
of size is the Mean Projected Height (MPH; Mean Caliper Di-
ameter), which is defined as the mean height of the shadow of
the particle for all possible orientations (Sahagian and
Proussevitch 1998). In isotropic materials the MPH can be ap-
proximated as the ratio of the particle volume to the mean in-
tercept area (Sahagian and Proussevitch 1998), which is close
to the longest dimension of a parallelepiped (orthogonal solid)
and hence the first definition of size. The MPH can also be
measured empirically using geometrical models for both iso-
tropic and non-isotropic fabrics.

The simplest formulation of the intersection probability ef-
fect for non-spherical objects is (e.g., Royet 1991)

n L
n L

HV XY
A XY

XY

( )
( )= (3)

where nV(LXY) is as defined in Equation 1, nA(LXY) is the number
of crystals per unit area in the length interval LX to LY, and H

–
XY

is the mean projected height for a length interval LX to LY.

DIRECT SOLUTIONS—CUT-SECTION EFFECT

The intersection probability effect uses the assumption that
each intersection passes exactly through the center of the ob-
ject along the longest axis. This is very unlikely and hence we
have to contend also with the cut-section effect.

The cut-section effect can be solved analytically only for
spheres (e.g., Royet 1991). The probability of a random inter-
section of a sphere of unit diameter, SXY, having an intersection
diameter between dX and dY is

S d dXY X Y= − − −1 12 2 (4)

This function rises to a maximum near the diameter of the
sphere, hence the most likely intersection diameter is close to
the maximum (Fig. 4A).

 The distribution of intersection dimensions for shapes such
as parallelepipeds must be derived numerically and can be very
complex with several modes (Fig. 4B; Higgins 1994; Sahagian
and Proussevitch 1998). There are two aspects to this problem:
what are the most likely intersection dimensions (length and
width); and what is the form of the intersection function for
smaller and larger intersections (tails)?

As noted above, for spheres and near-equant forms, the mean
intersection length is close to the true 3D size of the object.
However, for monodisperse populations of randomly oriented
anisotropic figures, such as parallelepipeds, the most-likely
intersection length is close to the intermediate dimension (Fig.
4B; Higgins 1994). That is, for a particle 1 × 2 × 10 mm, the

most-likely intersection length is 2 mm. The most-likely inter-
section width is close to the short dimension (Fig. 4B). The
same is true for non-rotational ellipsoids that have the same
dimensions (Sahagian and Proussevitch 1998). The same ar-
gument also can be applied to polydisperse populations (many
3D sizes). These modal values for intersection length and width
can be corrected to the true length of the crystal, or any other
size parameter, if the shape of the solid is known. How to de-
termine crystal shapes will be discussed later. However, there
is another problem: intersection lengths and widths for a mono-
disperse population tail out to smaller and larger values respec-
tively around the most-likely intersection length. If the simple
conversions of Equations 2 or 3 are used, then the effects of
tailing become very important. This is because small intersec-
tions of large objects (corners) will be converted using their
apparent length and not their true length. This problem is illus-
trated for prisms and tablets in Figure 5.

Saltikov (1967) proposed a method of unfolding a popula-
tion of intersection lengths into the true length using a function
of the intersection lengths. This method is well illustrated in
the paper of Sahagian and Proussevitch (1998). For a polydis-
perse population, the 3D distribution of lengths can be found
by applying the function for a monodisperse population of the
same shape to the 2D length distribution. The values of nV(LXY)
for a series of bins from 1, 2, 3, 4 … can be calculated sequen-
tially from the following equations (slightly modified from
those of Sahagian and Proussevitch):

n L
n l

P H

n L
n l n L P H

P H

n L
n l n L P H n L P H

P H

n L
n l n L P H n L P

V
A

V
A V

V
A V V

V
A V V

( )
( )

( )
( ) ( )

( )
( ) ( ) ( )

( )
( ) ( ) ( )

1
1

11 1

2
2 1 12 1

22 2

3
3 2 23 2 1 13 1

33 3

4
4 3 34 3 2 24

=

= −

= − −

= − − HH n L P H

P H
V2 1 14 1

44 4

− ( )

(5)

where nV(L1) and nA(l1) refer to the first (largest) size interval,
P12 is the probability that a crystal with a true size in interval 1
will have an intersection that falls in the interval 2, and H

–
1 is

the mean projected height for interval 1. [Note simplified no-
tation for nV(L1) and nA(l1)]. The size intervals are logarithmic—
both Saltikov (1967) and Sahagian and Proussevitch (1998 )
proposed ten size bins per decade, that is, each bin is 10–0.1

smaller than its neighbor. The probabilities can be calculated
from numerical models of different crystal shapes (Higgins
1994; Sahagian and Proussevitch 1998). For isotropic fabrics,
the shape is constructed mathematically and sectioned using
randomly oriented planes placed at random distances from the
center of the crystal model. The mean projected heights also
can be calculated using the same models.

The Saltikov method works well for spheres and near equant
objects because the modal 2D length lies close to the maxi-
mum 3D length (Fig. 4A; e.g., Armienti et al. 1994; Sahagian
and Proussevitch 1998). However, this method is less success-
ful for complex objects because the largest 2D intersections
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are not very common (Fig. 4B), that is, the modal 2D length is
much less than the maximum 2D length. Therefore, the less
abundant, and hence less accurately determined, larger inter-
sections are used to correct for the most abundant intersections
(Fig. 6A), introducing large errors in the corrected 3D length
distributions. The problem is actually worse than might be ex-
pected from the works of Saltikov (1967) and Sahagian and
Proussevitch (1998 ) as both authors placed the maximum in-
tersection length at the upper limit of the size bin. Because true
particle sizes can be distributed throughout the size bin, at the
very least, the maximum intersection size should be placed at
the center of the bin. In the CSDCorrections program, which
uses the methods proposed in this paper, a more complex algo-
rithm is used and the maximum intersection sizes are actually
evenly distributed across the size interval. However, this does
not make a large difference to the calculated probabilities.

Sahagian and Proussevitch (1998) reduced this problem by
ignoring the class of largest intersections and shifting the prob-
abilities to lower classes. Here, I propose using the most likely

intersection length or width (modal value) to correct for the
tailing to other intersections (Fig. 6B). However, it is not pos-
sible to correct tailing in both directions using this technique—
tailing to intersections either larger or smaller than the modal
value must be ignored. It is clear from Figure 5 that tailing to
smaller intersections is a much more important problem than
tailing to larger intersections for most CSDs. Hence, the first
size interval is centered on the mode of the intersection length
or width.

Some workers have considered the Saltikov technique to
be impractical because of the accumulation of terms, and hence
errors, in the smaller bins. This problem is not always very
serious as many of the terms are not significant. It can also be
reduced by using fewer, wider bins—in this paper 4 or 5 bins
per decade are used. Figure 5 shows how this is applied to a

FIGURE 5. The effect of uncorrected tailing about the mode of the
intersection width and length for a monodisperse collection of 1000
prisms (1:1:5) and tablets (1:5:5). The population density of a
monodisperse population ln[nV(L)] depends on the width of the bin
(see text and Fig. 8). The curve represents the CSD of the intersections
if the simple equations for correction of the nA(LXY) values for the
intersection probability effect (Equations 2 and 3) are used without
correction for tailing. Clearly this effect is very important, especially
for small intersections. However, the effect is less pronounced if widths,
rather than lengths are used.

FIGURE 6. Application of corrections to a 1:5:5 tablet. (A) Size
intervals used for corrections using the Saltikov method. There are ten
size bins for each decade. The intervals have been slightly modified
from the original method: here, the largest intersection length is placed
at the center of the first size interval as in polydisperse systems the
true size can lie anywhere in the size interval. The shaded area
represents the number of intersections used to make the corrections.
(B) Size intervals used for corrections using the method proposed in
this paper. The modal intersection length is placed at the center of the
first bin. Oversized intersections (dotted area) are added to the first
size interval.
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polydisperse collection of 1:5:5 tablets. Intersections greater
than the first interval cannot be corrected precisely with this
method. However, if they are added to the first interval, then
this error is minimized.

Clearly, the fewer corrections that are needed the greater
the accuracy of the final data. In many cases use of intersec-
tion widths instead of lengths reduces the amount of correc-
tions necessary. Figure 7 suggests a possible strategy for this
choice.

Once the mode of the intersection length or width is used
instead of the maximum values, then the intersection length
scale no longer corresponds to the true length scale: that is, LX

≠ lX and LY ≠ lY. For an orthogonal block with a short dimension
S, an intermediate dimension I, and a long dimension L, the
modal value of the intersection lengths on randomly oriented
planes is I (Higgins 1994) hence:

LX = lXL/I    and     LY = lYL/I (6a)

Similarly for intersection widths:

LX = wXL/S     and     LY = wYL/S (6b)

It has been found that for tablets, where L/I = 1, a much
better fit is obtained to test data (see later) if the mean intersec-
tion length is used rather than L in Equations 6. This gives a
maximum difference of 20% in the length scale for 1:10:10
tablets and decreases to zero for cubes. Equations 5 do not need
to be changed as H

–
1 is determined in terms of the true crystal

length.
Other refinements have been also made to the Saltikov

method. Tuffen (1998) has pointed out that the inverse of the
Mean Projected Height must be averaged over the true length
interval and proposed that

1 1
H X Y

dL

LXY Y

X




 =

− ∫ (7)

where X = upper limit of interval and Y = lower limit of inter-
val. Equation 7 can be integrated to give

1
H

X Y

X YXY





 = ( )

−
ln / (8)

The original equations of Saltikov (1967) used logarithmic
size bins. Sahagian and Proussevitch (1998) followed this idea,
but introduced more complex equations for linear size bins.
However, if the probabilities used in Equations 5 are calcu-
lated for each cycle of corrections then the calculations remain
simple for any bin size. This method of calculation has been
implemented in CSDCorrections, so that previously published
data can be corrected. Nevertheless, the use of logarithmic size
bins is strongly recommended.

The Saltikov method can only be used in its simplest form
for isotropic fabrics. However, the probabilities of intersection,
and the factors for converting intersection widths and lengths
to true crystal sizes can be readily modeled for anisotropic fab-
rics if the fabric parameters are known or can be estimated.
The intersection probabilities also depend on the shape of the
crystals. Hence crystal shape and fabric will now be discussed.

CRYSTAL SHAPES AND FABRICS

The shape of crystals has its own interest (e.g., Sunagawa
1987), but is also necessary for the stereological corrections.
Here overall crystal shapes are simplified and defined in terms
of the aspect ratio and degree of rounding.

The aspect ratio has three parameters, the short, intermedi-
ate, and long dimensions (S:I:L). If crystals can be separated
from the matrix, then their shape can be measured directly. It is
not necessary to have a quantitative separation, as would be
needed to determine the CSD. Typically it is not possible to
separate crystals, and their shape must be estimated from the
parameters of the intersection width/length ratio (w/l) distribu-
tions. Higgins (1994) showed that for a massive rock (no pre-
ferred orientation) and crystals modeled as parallelepipeds, the
mode of the w/l is equal to S/I. The ratio I/L is more difficult to
determine, but can be estimated from the skewness of the w/l
distributions as follows:

 Skewness = (mean w/l - mode w/l) / standard deviation w/l
(9)

and

I/L = Skewness + 0.5

These equations are not accurate for near equant shapes. If
the rock is foliated or lineated, then the mode of the w/l of
sections parallel or normal to the fabric can give much more
precise values for both S/I and I/L (Table 1).

The degree of rounding can vary from euhedral (angular) to
ellipsoid. Concave and branching crystal forms cannot be cor-

FIGURE 7. Flow diagram for the choice of length or width
measurements.
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rected by the methods proposed here and must be measured by
direct stereological methods. A special feature of the intersec-
tion distribution graphs for parallelepipeds is that tailing to in-
tersections smaller than the mode are almost independent of
length or width. The same distribution for spheres ramps down
to zero abundance at zero length or width (Fig. 4A). Hence the
effect of rounding can be approximated by modifying the part
of the distribution to the left of the mode. The exact form of the
function is not clear, but has been approximated here in the
following way: a roundness factor is defined to be between
one (ellipsoids) and zero (angular crystals). The function fol-
lows that of the parallelepiped down to the point where the
roundness factor equals the ratio of I/S. From then on the func-
tion decreases linearly to zero at zero size intersections.

Fabric in rocks can be defined by a preferred orientation of
crystal shapes or lattice orientations. Only shape-preferred ori-
entations will affect the stereological conversion of CSDs, al-
though lattice-preferred orientations have interest in their own
right. Fabric can be lineated or foliated, and the quality can
vary from perfect alignment of all crystals to no alignment
(equivalent to a massive rock). The effects of preferred orien-
tations on the probabilities of intersection dimensions can be
calculated from a numerical model as before, except that the
orientation of the intersection planes is constrained according
to the type and quality of the fabric and the orientation of the
section.

POPULATION DENSITY

All methods so far described have produced a set of values
of the volumetric number density nV(LXY). However, the value
of this parameter depends on the width of the interval LY - LX.
Hence it is usually divided by the width of the interval to give
the population density n'

V(L).

(10)

Note that the units of population density are 1/Length4, as
the volumetric number density of crystals has the units of 1/
Length3 and it is divided by a length, the bin width.

If the CSD is continuous, that is, it has no empty bins, then
the value of population density will not change for different
bin widths. If the gaps appear to be due to scarcity of data then
the bin widths may be widened or more crystals counted. How-
ever, there is no intrinsic reason why all CSDs should be con-
tinuous and so we must be able to accommodate such gaps.
(However, it should be noted that intersection histograms are
usually continuous.) Although commonly drawn as line graphs
or as a series of unconnected points, CSDs are actually histo-

grams (Fig. 8). Therefore, the line type CSDs should not be
drawn across empty bins. Similarly, unconnected points give
no idea if there are intervening empty bins.

The most convenient units of population density for most
studies are 1/mm4, although some authors (e.g., Cashman and
Marsh 1988) use mm for linear dimensions (Size) and 1/cm4

for population density. CSDs are generally plotted on a graph
of Ln (population density) versus Size following Marsh (1988).

ERROR ANALYSIS

Inaccuracy in the determination of population densities
arises principally from three sources. The easiest to understand
and quantify is the counting error. This is taken to be the square
root of the number of intersections within an interval. It is usu-
ally only significant for larger size intervals with fewer than
20 intersections.

The second source of error is in the value of the probability
parameters PXY used in Equations 5. Although these parameters
are precisely defined for fixed convex shapes, crystals in most
natural systems have more irregular and variable shapes. An-
other source of error is that tailing to intersections larger than
the modal interval is included in the modal interval (Fig. 6B).
Hence, it is difficult to estimate the contributions from this

TABLE 1. Modal values of different intersection parameters for ideal parallelepipeds (Higgins 1994)

Fabric type Intersection Intersection Intersection Intersection
Length (l)  Width (w) Area Width/Length (w/l)

Isotropic I S S.I I/S
Foliated, normal I S S.I I/S
Foliated, parallel L I I.L L/I
Lineated, normal I S S.I I/S
Lineated, parallel L I S.L L/S
F and L, normal I S S.I I/S
F and L, parallel L I I.L L/I
Notes: S = Short dimension, I = Intermediate dimension, L = Long dimension. Invariant values are shown in bold italic.

FIGURE 8. CSDs are actually histograms of data, although they
are commonly drawn as a series of points that may be connected. This
distinction is only important if there are empty bins. In such cases, the
CSD should not be linked across the gap. The nature of the lower limit
of the CSD is also important: if all crystals have been measured in a
section then this limit indicates that there are no crystals smaller than
this size. However, if the lower size limit is dictated by technical
considerations (e.g., smallest crystal that could be recognized) then
the CSD is undefined below this limit.

n L
n L

L LV
V XY

Y X

' ( )
( )=
−
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source to the total error. However, it is easy to calculate the
contribution of the counting errors of other intersection inter-
vals to the total correction of an interval. This source of error is
most important for small size intervals, where corrections are
most significant.

The third source of error lies in the conversion of interme-
diate crystal dimensions (for intersection length measurements)
or short crystal dimensions (for intersection width measure-
ments) to crystal lengths (the size criteria used in this paper)
using Equations 6. Errors in the determination of the crystal
shape will produce systematic errors in both the population
density and the size.

VERIFICATION OF THE METHOD

The method of data reduction proposed here must be veri-
fied to show that it does yield results that are not only precise,
but also accurate. The key algorithm of the program
CSDCorrections has been inverted to produce the crystal inter-
sections shown in Figure 2. Such intersections could then be
measured to check that the original population density is re-
covered. However, an independent check on the methods is
much more valuable. The modeling of Peterson (1996) was
based on a very different approach, and should provide such a
check.

Peterson presented data for populations of spheres and or-
thogonal parallelepipeds with linear CSDs and several differ-
ent slopes. Lists of intersection lengths were obtained at http:/
/www.nrcan.gc.ca/~tpeterso/csd_e.html. Figure 9 shows the
results for two families of solids with very different slopes and
intercepts. In both cases there is a close agreement between the
original population density and that calculated with the pro-
gram CSDCorrections, with maximum errors of ± 0.5 ln units
in the population density.

APPLICATION OF THE METHOD TO ROCKS

Published CSDs calculated according to other conversion
equations can be readily recalculated if the crystal shape, de-
gree of roundness, fabric, and orientation can be estimated.

The CSDs of two lavas and two plutonic rocks are shown in
Figure 10 and the original data in Table 2. Cashman and Marsh
(1988) determined the CSD of plagioclase from the Makaopuhi
lava lake, Hawaii. These data have been converted to mm and
recalculated using crystal dimensions of 1:3:4 and massive fab-
ric (Fig. 10A). For larger crystals there is a difference of a fac-
tor of 50 in the population density [Ln(4)]. There is much less
difference in the overall slope, 0.75, but the new CSD has a
more-pronounced curvature. The CSD of microcline megacrysts
from the Cathedral Peak Granite, Sierra Nevada (Fig. 10B;
Higgins 2000) have population densities one fiftieth [Ln(–4)]
that calculated using Wager’s equation, and the turn-down for
small crystals is more evident. The CSDs of plagioclase crys-
tals from the Kameni islands, Greece (Fig. 10C; Higgins 1996)
have somewhat different slopes using the two equations, but
actual values converge for greater lengths. Plagioclase from
the Kiglapait Intrusion, Labrador has a pronounced hump-shape
typical of textures produced by textural coarsening (Higgins,
in preparation). In this case both methods give exactly the same
result (Fig. 10D).

FIGURE 9. Verification of the correction technique and computer
program (CSDCorrections) presented here using the test data of
Peterson (1996). (top) Family of solids each with the same original
CSD: Slope = –1.5 and intercept = –2.3. (bottom) Family of solids
each with the same original CSD: Slope = –20 and intercept = +6.0.

CONCLUDING REMARKS

The stereology of conversion of the two-dimensional data
obtained from the study of thin sections etc., is complex, but
can be approximated for convex shapes. The approach here is
based on a parallelepiped model with an aspect ratio the same
as that of the crystals. It is modified to account for rounding of
the crystals. The fabric of the rock must also be determined as
well as the quality of the fabric and the orientation of the sec-
tion with respect to the fabric. CSDs calculated by other popu-
lar methods can have population densities that are very different
from those produced by the methods suggested here. However,
the slope of many CSDs does not change much. Published CSDs
calculated using other methods can be recalculated if the crys-
tal shape and fabric can be estimated. Finally, possible advances
in stereology make it essential that in all studies, the raw 2D
data of CSD measurements together with the areas measured,
crystal shapes, and fabrics are made available, so that the data
may be recalculated in the future.

The calculations described above are incorporated into a
Windows 95/98 program called CSDCorrections. Data are en-
tered either as lists of intersection widths or lengths, or as in-
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tersection interval lengths and numbers of intersection lengths,
or widths per unit area. The latter method is to accommodate
recalculation of published data. In addition, the crystal shape
(block or sphere), overall dimensions, degree of roundness,
fabric, quality of fabric, orientation of section, and area mea-
sured must also be entered. The program CSDCorrections, other
programs, and information on CSDs, are available from the
American Mineralogist web site http://www.minsocam.org/
MSA/AmMin or http://wwwdsa.uqac.uquebec.ca/~mhiggins/
CSD.html.
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